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Summary

We consider the total mortality rates of male population as observed in 49
voivodeships of Poland. We look for a linear regression explaining the mortality in men
(Y) as a linear function of nine variates denoted in the following as X|,..., Xy and
reported for each voivodeship. The squared multiple correlation coefficient for the
established regression is about 0.75. However, constructing a full regression of all the
potential predictors and looking at the ¢ statistics indicating the immportance of the
considered explanatory variables, we do not obtain an unique and univocal indication
of which variables are good predictors for the considered Y-variable, and which are not.

It should be stressed, that the importance of variables — as indicated by the ¢
statistics — is valid only in the context of the established regression; variables
appearing in the established "full” regression as "nonsignificant” (in the meaning of the
¢ statistics) can have big predictive power not indicated by the full regression.

We illustrate this by finding alternative subsets of variables. This is done by some
detailed considerations based on exploratory data analysis (EDA) techniques and also
by detecting near collinearities amongst the variables using a method proposed by
Hawkins (1973), which allows to deduce from the established relations which variables
are exchangeable.

1. Introduction, the data

The mortality rates in Poland exhibit considerable differentiation among the

administrative regions (voivodeships). It is supposed that the observed variability

Key words: LSE (Least Squares Error) regression, subsets of predictors, alterna-
tive subsets, exploratory data analysis, mortality of men.
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might be related to several environmental variables which differ among voivode-
ships.

To throw some light on this problem epidemiologists try to find a model for
this phenomenon by using some multivariate statistical techniques. One of such
techniques is provided by multiple regression, in which the mortality rate is
assumed as the response (predicted) variable, and the environmental variables
as the explanatory ones.

For our considerations we took data from the data base created and main-
tained in the Department of Epidemiology and Prevention of CVD, Institute of
Cardiology, Warsaw (Kupsé and Jasinski, 1991). From these data we took 9
variables as predictor variables and the mortality rate of men as the predicted
variable. The 9 predictors were selected from a larger set of potential risk factors.

The predictor variables, denoted in the following as X|,..., X, are (the terms
in quotation marks show the variable labeis)

X, “artf” — artificial fertilizers (kg/ha),

X5 “ul8y” — % of population under age of 18 years,

Xj: “divr” — divorce rate (per 1000 pop.),

X,: “nati” — natural increase (per 1000 pop.)

X;: “emin” — employment in industry (% per 1000 men),

X “nmed” — number of medical doctors (per 10000 pop.),

Xq7: “mmar” — % of married men,

Xg: “wmar” — % of married women,

Xy “sece” — % of persons with at least seccndary education level.

The predicted variable Y labeled “ymog” denotes the mean total standardized
mortality rate of men for the years 1989-1991.

The values of these variables were reported in 49 voivodeships of Poland.
Data taken for further analysis are in the form:

)U("xp —the data table comprising n = 49 rows (voivodeships) and p = 9 columns
corresponding to the considered explanatory variables,

V.xi — the column vector comprising values of the variable Y as reported in
the n = 49 voivodeships of Poland.

In Table 1 we show the data for three voivodeships: Warszawa, Wroclaw and
1.6dz. In that table Y, and Y,, denote mortality rates for women and men
age-adjusted according to the WHO world standard. In this paper we will analyze
only the mortality rates for men — the respective rates for women are shown in
Table 1 for comparative purpose only. To make the comparisons between these
voivodeships easier, we show in the same table also the respective normalized
data values (“normalized” means that from each data value the appropriate mean
was subtracted, and the obtained difference was divided by the standard devia-
tion of the variable).
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Table 1
Data vectors for 3 selected voivodeships: no. 1 (Warsaw), no. 24 (£.6dz)
and no. 47 (Wroctaw)

NO. Vosl;?;e- X1 X2 X3 X4 X5 XG X7 XS Xg Yw Ym

a) Original values

1 Warsaw |139.0 24.1 13 -1.1 296 415 684 589 536 529.52 972.89
24 Loédz 140.0 23.3 2.1 -38 413 369 704 592 395 599.001131.92
47 Wroctaw |250.0 27.6 1.5 31 269 337 67.0 614 402 526.11 999.31

b) Normalized values

1 Warsaw | —0.46 —-2.90 0.73 -241 080 327 063 -239 404 008 064
24 Lédz -0.44 -3.26 2.79 348 237 262 211 -222 179 212 2.07
47 Wroctaw 1.64 -1.311.25 -0.75 044 217 -040 -1.00 190 -0.02 -0.19

In the following we will consider two groups of data, called Group I and Group
1I. The first group comprises the full set of data containing n=49 voivodeships.
From a preliminary analysis it appeared that the voivodeship L6dz is atypical.
Some regression diagnostics (not shown here) indicated that this voivodeship
might be very influential in the calculated regression. To throw more light on
the impact of this voivodeship in the evaluated regression we have removed the
data vector describing £.6dz from the data — and so we got the second group,
called Group II, with n=48, containing all the voivodeships but the vector no. 24
identified with L.6dz.

2. Preliminary investigation of the structure of the
data by inspecting scatterplot matrices and biplots

To see whether the data exhibit some unusual pattern, we performed firstly
a kind of exploratory data analysis (EDA). We have chosen for this purpose (a)
— scatterplot matrices, and (b) — biplots. A scatterplot matrix permits identifying
outliers in pairs of variables by looking at two-dimensional scatterplots exhibiting
the values for fixed pairs of the variables. A biplot permits exhibiting simulta-
necusly the relations (correlations) between variables, between individuals, and
both between variables and individuals. Also, often it permits identifying gross
multivariate outliers.

In the following we present the results of our analysis, when using these two

EDA techniques.
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2.1. Inspecting the data using scatterplot matrices

To draw our scatterplot matrices we have used the system XLispStat (Tierney,
1990). In Fig. 1 we show the scatterplot matrix for all pairs of variables
Xi,..., X, Y.

We are mostly concerned with the first row of the plots, i.e. in the scatterplots
representing scatterdiagrams of the pairs (X, Y), (X,, Y),...,(X,, Y). Looking at
these scatterdiagrams one can see, that there is a positive correlation between
the variables (X, Y), (X;,Y), (X;, Y), (X3,Y), while the correlation between (X,,Y)
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Figure 1. Scatterplot matrix from the variables X,...,X,,Y. Group I of data.
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Table 2.

Correlation matrix evaluated for 11 variables

1 artf 1.00

2 ul8y -0.06 1.00

3 divr 047 -046 1.00

4 mnati 008 096 -045 1.00

5 emin 047 -054 056 -0.55 1.00

6 nmed 008 -075 048 —065 037 1.00

7 mmar 045 -043 050 060 054 0.15 1.00

8 wmar 017 042 001 028 -0.14 -056 033 1.00

9 sece 027 062 062 -050 045 088 0.19 052 1.00

10 ywog 072 -031 063 -039 072 016 066 009 033 1.00

oy
[y

ymog 062 -020 065 -032 054 -0.01 068 031 0.14 0.88 1.00
1 2 3 4 5 6 7 8 9 10 11

and (X}, Y) exhibits a negative trend, very blurred though. The mostly correlated
pair is (Xy, X)).

The full matrix of correlations between the considered variables (with the
variable “ywog” denoting the standardized mortality rate for women) is shown
in Table 2.

Looking at the scatterplots exhibited in Fig. 1 we can see distinctly one outlier,
which is identified as the point (data row) no. 24 corresponding to the voivodeship
£.6dz. This voivodeship has really atypical demographic indices and should be
investigated separately for its influence exerted in the to be carried out regression
analysis. To find out the real influence of this data vector we have established
for our analysis two groups of data as explained in Section 1 and have investigated
them in parallel.

2.2. Inspecting mutual correlations exhibited in biplots

A biplot is a method of presenting in the same plot both variables and
individuals in such a way that their mutual relationships can be revealed. The
term “biplot” means that this is a dual representation, both of variables and of
individuals, put together in the same plot. Usually the individuals are marked
as points, and the variables as vectors.

The principles of constructing a biplot can be found in the papers of Gabriel
(1982, 1990), also in the books by Jolliffe (1988) or Krzanowski (1988). For
drawing the biplots shown below we have used the program BIPLOT from the
package SFAX (Bartkowiak, 1995). The algorithm used in this program is de-
scribed by Bartkowiak and Szustalewicz (1995).
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In Fig. 2 and Fig. 3 we show two biplots constructed from the variables
Xi,..., X, Y. The biplot shown in Fig. 2 was constructed using Group I comprising
all voivodeships; the biplot shown in Fig. 3 is based on Group II. Both biplots
were constructed from correlation matrices.

The dots in the biplots numbered 1-49 in Fig 2 and 1-23, 25-49 in Fig 3
represent the voivodeships. The vectors labeled Xj,..., Xy, Y represent the con-
sidered variables. Generally the points and the vectors in the biplot plane
represent projections from the multivariate space onto the plane of the first two
principal components.

Let us remind the decomposition formula established in the principal compo-

nents theory (described e.g. by Morrison, 1967, or Jolliffe, 1986):

n
o
R = 2 X;aiaf .

i=1

In this formula R denotes the correlation matrix of size mxm, m = p+1; A; and
a; are the eigenvalues and the eigenvectors obtained for R. From the formula we
can deduce how much of the diagonal of R (i.e. of the trace of R) is reproduced
by consecutive principal components.

Returning to our biplots shown in Fig 2 and Fig 3: the goodness (adequacy)
of the representation in the exhibited plots can be measured by the percentage
of exhaustion of the trace - when taking into account the first two principal axes,
i.e. the first two components in the decomposition formula shown above. For the
biplots shown in Fig. 2 and 3 the goodness of representation is about 70 %; the
detailed numbers are shown in the table below.

Figure: Fig.2 Fig.3
1st axis: 47.46 42.83
2nd axis: 25.05 27.45
both axes: 72.51 70.28
out of Total 100.00 100.00

Our computational program has used such algorithm (see Bartkowiak and
Szustalewicz, 1995) that the vectors-variables, when computed from correlation
matrices, are of unit length.

When working with biplots it is important to know which variables are
represented in the constructed plots fairly, and which are not. This can be seen
when looking at the reproduction of R by the diagonals of the rank one matrices
Mala? and ?\Qazag and considering separately each of the elements of the respec- .
tive diagonals. We could also ask, how much would be gained by adding a third
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2nd component (25.1%)
0

-1 -0.5 0 0.5 1
1st component (47.5%)

Figure 2. Biplot from the variables Xj,...,X,,Y. Group I of data. Points-dots
numbered 1-49 represent the 49 voivodeships of Poland.
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Figure 3. Biplot from the variables Xj,...,X,,Y. Group II of data in which the
voivodeship no. 24 £.6dZ has been omitted.
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dimension to the biplot, i.e. by constructing a three-dimensional biplot (this is
possible when using appropriate software). The gain of adding the third dimen-
sion can be gauged by the magnitude of the values of the diagonal elements of
the matrix Agazal .

The cumulative reproduction of the diagonal of R by the first three principal
components is shown in Table 3.

Table 3
Cumulative reproduction of the diagonal of the correlation matrix evaluated for Data
Set I and Data Set II — by use of first two and first three principal components

Variables %o
Total
trace

Principal
components | 1 2 3 4 5 6 7 8 9 11

Plot 2 (12=49, with £.6dz)
First two b4 8 67 713 63 87 72 70 .75 .83 72.5
First three 78 95 .74 97 63 .88 .86 .15 .90 .83 83.0
Plot 2 (=48, without %.6dz)
First two b9 78 61 65 58 8 .70 68 .76 .83 70.3
First three J16 95 74 97 B8 87T 84 75 90 .84 82.1

Looking at the values shown in Table 3 one can state that the representation
shown in the biplots is not extremely good. The variables X;, X; and X; have the
worst representation. This can be seen when looking at the length of the respec-
tive vectors shown in the plots in Fig. 2 and Fig. 3. Adding the third dimension
(i.e. constructing a 3-dimensional biplot) would be helpful, although also this
would not yield a very good representation — this follows from the fact that a
3-dimensional biplot would reproduce 83.0 % and 82.1 % of total trace of the
respective correlation matrices.

Having in mind the regression of Y on the variables X|,..., X, we see in both
biplots the same pattern: the most closest to Y are X;, X7, X5 and X5. The variables
X5 and X, exhibit-a week negative correlation and in both plots are located as
opposite to the bunch of the other variables. Other characteristics of the two
biplots are very similar. Thus we feel justified to conclude that, generally, the
voivodeship £.6dz, in spite of being an outlier, does not seem to exert any essential
influence on the structure (relationship) amongst the considered variables.
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3. Calculations of the regression using the method of
least squares error (LSE)

The classical linear regression model is given by the equation
Y=b0+le1+...+bp)(p+€ , (1)

with e ~ N(0, ?).
Proceeding in the classical way, i.e. using the least squares error (LSE) method
we obtain (see, e.g., Chatterjee and Hadi, 1988)

b = (XIX)Xy | @)
/\2 ‘. 1 N ’I‘ A
o= A (y-Xb) (y-Xb) , 3)
var(b) = (X'X)"'o? . (4)

In the equations (2-4) above X denotes the augmented data matrix [1, )u(],
with the unit vector 1, corresponding to the intercept b, appearing in (1), and b
denotes the vector (b, b;,..., b],)T.

Let the symbols s, sV, s®”) denote the diagonal elements of (X'X)™'. The

Studentized estimates of the regression coefficients b, b,,..., b, appearing in (1)
are

A

b.

1

R )

We have used these formulae to obtain the estimates of the regression of Y
(=“ymog”) on the variables Xj,..., X, for the data presented above in Section 1 as
Group I and Group II. The results of calculations are shown in Table 4.

The calculations were carried out in parallel for the groups I and II of the
data. We have calculated the ordinary LSE regression and two robust regressions:
the a-trimmed regression and a robust regression using Huber’s weights. All the
3 regressions were calculated using the programs NNREG, RK and STEFF from
the package SFAX (Bartkowiak, 1995).

The program RK is based essentially on the algorithm described by Antoch
and Bartkowiak (1988). For our calculations we have used the trimming constant
o = 0.08 (roughly speaking, the constant o denotes fraction of discarded obser-
vations, when establishing the final regression estimate).

The program STEFF uses the iteratively reweighted Beaton-Tukey algorithm
with Huber’s weights as described by Li (1985) or Bartkowiak (1992). In our
calculations we have used the accuracy coefficient & = 0.05 and the tuning con-
stant k = 1.8 (A short explanation of ¢ and «k: The iterative process stops, when
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Table 4
Studentized regression coefficients when considering two sets of explanatory variables
X1,...,X9 and X1,X3,X5,...,X9) and using the least squares error (LSE), a-trimmed
(a-tr) and iteratively reweighted with Huber weights (Hub) methods of estimation of
the regression coefficients. R denotes multiple correlation coefficient.

i Full set X;,...,Xg Only X;,X3,Xs,....Xq
LSE a—tr Hub LSE a—tr Hub
Group I, n =49
1 —artf 2.76 2.76 3.87 2.39 2.30 2.99
2-ul8y 1.90 1.90 2.63 - = =
3 —divr 4.26 4.26 6.04 4.29 4.75 548
4 —nati -2.13 -2.13 -2.88 - -
5 —emin 1.09 1.09 1.64 1.07 1.37 1.72
6 —nmed -1.74 -1.74 -2.32 -1.45 -1.43 -1.80
7 — mmar 0.19 0.19 0.44 2.88 3.06 3.54
8 — wmar -0.00 -0.00 -0.23 -0.48 -0.68 ~0.68
9 —sece 0.11 0.11 0.09 -0.84 -0.99 -1.10
RR 0.77 0.77 - 0.75 0.78 -
GroupII, n = 48
1 —artf 3.16 3.24 4.29 2.78 2.74 3.81
2 —-ul8y 1.79 1.97 2.84 - N =
3 —divr 3.00 3.10 3.95 3.05 3.01 3.71
4 —nati -2.10 —2.26 -2.87 = = =
5 —emin 0.96 1.06 1.63 0.99 1.15 1.91
6 —nmed -2.15 -2.18 -3.14 -1.85 -1.61 —-2.64
7 —mmar | -0.19 -0.30 -0.40 2.18 2.24 2.66
8 —wmar 0.76 0.93 1.23 0.33 0.27 0.53
9 —sece 0.73 0.85 1.28 -0.12 -0.29 0.08
RR 0.77 0.79 - 0.73 0.74 -

the estimates of b obtained in two subsequent iterations differ less then ¢. Data
vectors, for which the absolute standardized residuals from the regression estab-

lished in subsequent iteration exceed the constant k, obtain lesser weight in next
iteration).
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In Table 4 we show the results of calculations for the two groups of the data.
These are: the Studentized regression coefficients — computed according to for-
mula (5) — and RR, the squared multiple correlation coefficient measuring the
goodness of fit. This is done taking into account the full set (X;,...,X;) and a
reduced set (X, X3, X;,...,Xg) of the predictors.

Variables for which the Studentized coefficients are in absolute value greater
than 2.0 can be judged as significant in the evaluated regression.

The results shown in Table 4 can be analyzed under several aspects. We may
be interested in comparing generally the results obtained for group I and group
IT of the data. Alternatively, we may want to compare the (Studentized) regres-
sion coefficients established by the LSE and robust methods. Also, we may be
interested in comparing the goodness of fit and importance of the predictors when
introducing into the regression equation all the 9 predictors and a reduced set

of 7 predictors only. All these aspects will be considered in details in next 3
subsections.

3.1. Comparing results for groups I and II of the data

The results obtained for the two sets look much alike. This concerns the
Studentized regression coefficients and the squared multiple correlation coeffi-
cient RR. Therefore it seems that the voivodeship 1.6d%, in spite of being an
outlier, does not have an essential influence on the calculated regression — we
obtained very similar (Studentized) regression coefficients.

3.2. Comparing results obtained by the LSE and the robust methods

The a-trimmed regression yields either the same results, or emphasizes
slightly more the importance of the variables in the evaluated regression.

The Huberized regression puts generally more importance on the considered
predictors, what is deduced from the fact that the Studentized regression coef-
ficients are larger.

3.3. Comparing results obtained for the sets X,,..., Xy and X;, X5, X;,..., Xy

When taking into account all the predictor variables X|,..., X, we conclude
that the significant variables are: X, X,, X4, X;. The variables X;, X;, Xg, X,
exhibit decidedly small Studentized regression coefficients and thus can be
Jjudged as "unimportant” in the considered context. The variable X (=“nmed”) is
not always formally established as “significant” although its Studentized regres-
sion coefficients are relatively high.

The role of the variables X, and X is somehow quizzical: both are important,
however looking at the sigus of the coefficients, we see that the variable X, has
a positive sign (hence positive impact on Y), the respective Studentized regression
coefficients being equal to 1.90, 1.90, 2.63 in Group I and 1.79, 1.97, 2.84 in Group
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II. This seems to be in contradiction with the results obtained from the former
exploratory analysis where we have seen both in the scatterplot matrices (Fig.
1) and in the biplots (Fig. 2 and 3), that the variable X, is negatively correlated
with Y. One of the referees has pointed out that such unexpected result could be
caused by the fact of introducing two highly correlated variables into the regres-
sion model: then only the unexplained variability may be accounted for by each
explanatory variable.

Having X, and X, in the regression model was not so much interesting for us:
it seems quite obvious that when the population is younger, then the mortality
rate should be lower. Our aim was to bring into light the role of the other
environmental variables in predicting the mortality rate. Therefore we have
simply dropped the variables X, and X, from the set of predictors and decided
to consider in parallel to the full set of predictors also the reduced set
Xy, X3, X;,..., Xg.

When considering the reduced subset X, X3, Xj,..., Xy we obtain a change of
importance of the variable X; (i.e. "mmar”): it becomes now very important in
the regression. Looking at the correlation coefficients we find that
(X7, Xy) = -0.4318, r(X;,X,) = -0.5955 and »(X;, Y) = 0.6764. So it appears, that
the variable X; has quite a high correlation with the variable Y, however its
importance in the regression Y = b + 6, X + ... + by X, was suppressed by a linear
combination of the variables X, and X}, none of which, when considered alone,
is so highly correlated with Y as the variable Xj is.

We will return to the problem of substituting some variables by others when
speaking on finding alternative subsets by inspecting near collinearities found
when rotating eigenvectors derived by the method of principal components. This
will be considered in detail in Section 4. Before doing that we will apply to our
data some classical search methods for optimal or quasi-optimal subsets of
predictors.

3.4. Finding relevant subsets by stepwise and all subset search methods

To find the subsets of variables that matter in prediction of the variable Y we
have applied the stepwise and the optimal subset search methods to find some
quasi-optimal or the optimal subset from the considered predictors. This was
done using the jerking algorithm or the optimal subset search algorithm im-
plemented in the program NNREG from the package SFAX (Bartkowiak, 1995).
Some results of the search are shown in Table 5.
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Table 5
Goodness of fit of alternative regressions. Variables having a significant ¢ statistics are
in bold. Evaluations carried out in Group I of data with 1 = 49 voivodeships.

Retained explanatory variables RR Method
1 2 3 4 5 6 7 8 9/0.77142 full regression
1 2 3 4 5 6 0.7657 stepwise search from 1...9
1 3 6 7 0.7336 4 optimal from 1...9
1 2 3 4 6 0.7657 5 optimal from 1...9
1 3 6 7 0.7336 4 optimal from 1,3,5...,9
1 3 5 6 17 0.7425 5 optimal from 1,3,5...9
1 3 6 0.6439
1 2 3 6 0.7336 . -
suggested by collinearities
1 3 4 6 0.7325 identified in the matrix shown
1 2 3 9 0.6697 |  inTable6
1 2 3 4 9 0.7405
1 3 6 7 0.7336

4. Investigation of interrelations between variables by
inspecting the loadings of rotated principal axes

Hawkins (1973) has proposed a method of finding alternative subsets in
regression by considering the loadings of principal axes derived by principal
component analysis carriszd out when considering the augmented cross-product
matrix Z'Z, with Z = [y, X].

It is the usual practice in principal component analysis to center the columns
of the matrix Z to zero mean. Very often the matrix Z is normalized (by dividing
its values by appropriate constants) in such a way, that the computed matrix
Z"Z is in fact the correlation matrix between the considered variables.

Let \y=... 2}, and a,...,a,, denote the eigenvalues and the eigenvectors of
the matrix Z'Z. Let us further assume that all the eigenvalues are positive.

Consider a hyperplane in the m-space (n = p + 1) given by the equation:

Y—2|3,;)(i=0 (6)

For a given point P = (y, x,..., x,) we can measure its distance from the hyper-
plane (8) in two ways:
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— by measuring its distance along the y-axis as

P
Y- z Bix; (7
€

(this is the way of proceeding when computing the ordinary LSE regression),
— by measuring its distance along the normal to the hyperplane as

P
y- 2 Pix;
i=1
s )
1+f5'f‘+...+|’;z

P

(this is the way of proceeding when carrying out the principal component ana-
lysis).

The first distance is called by Hawkins the y-norm distance, and the second
— the vertical distance.

Let s* denote the squared distance along the y-axis (i.e. the squared y-norm
distance), and h — the squared distance along the normal to the hyperplane (6).
Obviously,

sP=0%, with P=1+p}+..+p2. ©)

Looking at the coefficient vector (1, -f,,..., -3,) appearing in (6) one can state

that {2 in the equation (9) above denotes just the squared length of the coefficient
vector.

Let us return to equation (6). We can also write down this equation as

apy +axy + ... +ax, =0, (10)

with directional cosines
(10=1/l, a.i=—‘3[-/l, l‘=1,.‘.,p.

Substituting I* = 1/ a3 into (9) and solving for A we obtain that

A= a(2,32 < sz, or alternatively o %}\ . (11)
Q
Hawkins (1973) has made the following remark: it is true that s? and A both
measure the fit of the hyperplane (6). Low s* implies low A, since 0 < a2 < 1.
However, given A, the y-norm distance s> may be either arbitrarily large if ¢, is
arbitrarily small, or very near to A, if a% is relatively near to 1.
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Let us note that a low A with a low @ corresponds to a near multicollinearity
amongst the predictors. Thus a linear combination of the x;’s which has a low
% identifies a low s predictor of Y if atz, is large, or a near multicollinearity
amongst the predictors if a% is small.

It is possible to find in the considered multivariate m-space some bases of
nyperplanes such that all possible hyperplanes in this space could be derived by
forming linear combinations of the basic hyperplanes. One such basis is provided
by the method of principal components, where each eigenvector a (computed from
the correlation matrix or the cross-product matrix of the points located in the
considered space) provides one hyperplane with the vertical norm A equal to the
eigenvalue A associated with the vector a.

Hawkins proposed to rescale the eigenvectors a,, a,..., a,, by square roots of
their eigenvalues A, Ay, ..., X, — to obtain the vectors d;= ;1_//\/7\; (y=1,..,m),
which in turn, when put together, define the matrix D:

D-@d,,..d,) . 12)

i

The components or coefficients of the vectors constituting the matrix D will
be called in the following the loadings.

The matrix D can be rotated (e.g. using the varimax principle proposed by
Kaiser, 1958; see also Morrison, 1967, or Krzanowski, 1988) to obtain a simpler
structure in the loadings. Each column of D defines a basic hyperplane in the
m-space.

Suppose that the variable Y was defined as the first column of the matrix Z.
Let s?;‘,) denote the sum of the squared y-norm residuals (called also the residual
sum of squares) obtained from the regression established by the k-th hyperplane.
It is proved that sg“),() can be obtained from the value dj, as its inverse:

The procedure proposed by Hawkins proceeds according to the following steps:

1. Calculate the eigenvalues and the eigenvectors of Z'Z, where Z = ly,X]is a
matrix whose columns are centered to zero, i.e. Z’ 1,,_ =0,

2. Rescale the eigenvectors obtained in step 1 to the matrix D defined by formula
(12) and rotate that matrix using the criterion “varimax” — to obtain a simpler
structure of the loadings.

3. Look at the coefficients d]J, = 1,...,m of the rotated matrix D, 1.e. at the row
of D corresponding to the pr edu;ted variable Y. Find those elements that are
relatively large (> 1). The k-th column identified with the largest difk indicates
a parsimonious regression equation — we construct then the regression equa-
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tion taking as predictors those variables that have “large” loadings in the k-th
rotated column of D.

4. To find collinearities amongst the predictors look at the last columns associated
with rather small values of A; and also with small loadings d:fj. Variables with

large loadings in such columns are nearly collinear and can be mutually
exchanged.

We have carried out the steps indicated above using the program HAWK from
the package SFAX. The calculations were carried out using the correlation matrix
of the variables Y, Xj,..., X. The results of the calculations, i.e. the rotated matrix
D and the eigenvalues are shown in Table 6.

For completeness of the presented results we show in the last (11-th) column
of Table 6 the sums of squares (SS) calculated from squared loadings of each
row — although we will not discuss further the meaning of the SS statistics.

We find in Table 6 that the relevant plane yielding a relatively small y-norm
fit is constituted by the 8-th column. It yields the residual sum of squares

1
1.75°

5y = =0.33 .

This regression is mainly loaded by the variables X, X,, X3, X, X; and X

Table 6
Rotated matrix of loadings together with A\/’s , the eigenvalues of the correlation
matrix of the considered variables. Last column (SS) contains sum of squares of all

loadings in given row

No. 1 2 3 4 5 6 7 8 9 10 11
Var| &= | 4746 2505 1.048 0570 0.409 0310 0202 0.130 0067 0012 SS
Y |ymog [-0.00 -0.01 -081 -0.05 -056 -030 025 175 030 039 443
1 jartf | 000 001 005 -001 145 -0.17 —0.15 -025 004 -0.19 225
2 |ul8y |-045 —043 037 -004 024 063 -038 -048 -0.12 [6.05]37.92
3 |dive | 000 003 185 -027 005 —0.09 —0.05 —046 0.11 -0.17 3.77
4 |nati |-058 -036 -035 -0.53 -0.85 -0.13 072 [ 1.20][6.18]43.80
5 lemin | 0.00 000 -0.05 0.4 -0.16 149 -008 -0.13 0.1 -015 231
6 |nmed |-0.02 -0.46 -029 010 -0.14 0.14 025 034 0.05 8.73
7 lmmar | 000 000 -0.07 -078 -042 -025 [182]-037 035 [L11] 564
8 |wmar | 000 -0.02 -022 160 —002 0.5 -026 -003 -0.13 -008 272
9 [sece [-0.01 -090 -078 070 -033 -0.17 005 004 [244]-076 857
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Furthermore, we find in Table 6 three collinearities provided by the columns
no. 7, no. 9 and no. 10.

Column 7 provides a collinearity between X, (="nati”) and X; (="mmar”). Thus,
each of these variables can be replaced by the other.

Column 9 provides a collinearity amongst the variables X, (="nati”), X,

="nmed”) and X (="sece”). Thus each of these variables can be replaced by the
remaining two.

Column 10 provides a collinearity between the variables X, (="ul8y”), X,
(="nati”), X; (="mmar”) and eventually X, (=“sece”). Thus each of these variables
can be replaced by the remaining ones.

Comparing these results with the former ones, obtained by the direct regres-
sional methods, we find them concordant. The regression identified by the 8-th
eigenvector shown in Table 6 is much similar — also in signs — to those obtained
by the LSE method and shown in Table 4 (note that to obtain similar results as
in Table 4, the signs in Table 6 corresponding to the predictors 1,...,9 should be
reversed). The one exception is that the LSE method does not indicate that the
variable X; (="mmar”) is significant. The reason for this becomes clear after
looking at the collinearity exhibited by the 7-th column of the rotated matrix D:
since X7 is nearly collinear with X,, and X, was accounted for by the LSE
regression, thus there was no need to indicate for X, as significant in the
established regression. However, when the variable X, was dropped from the
LSE regression, then the variable X, was indicated as important, i.e. as signifi-
cant.

The 9-th column of the matrix D exhibits a collinearity between the variables
X4, X and Xy Thus it can be expected that, after dropping the variables X, and
X from the equation established by column 8 of the rotated matrix D, the variable
Xg will appear as important in the considered regression.

Following these findings we have evaluated the goodness of fit of the LSE
regression for some alternative subsets which were derived by exchanging va-
riables as indicated by the collinearities found in Table 6. The goodness of fit
(measured by RR, the squared multiple correlation coefficient) of the alternative
regressions is shown in Table 5. One can see that the indications found from
Table 6 yield in practice good alternative regressions.

5. Discussion and final remarks

We have demonstrated that establishing a dependence model between one
specified predicted variable and several specified predictor variables is not so
straightforward as could be judged from some introductory textbooks. In any



78 A. Bartkowiak, W. Kupsé

case we should not stop after carrying out a regression analysis, but follow
Tukey’s principle: Look at the data and think what you are doing!

As one of the referees has pointed out (thanks to him for his comments!) we
should be aware that there is an important difference between analysing data
to obtain indications and explanations about the importance of possible interre-
lationships, and analysing data to obtain good predictors.

The goal of our analysis was double. We wanted to obtain a subset of good
predictors; however at the same time we wanted to obtain indications and
explanations of the importance of the considered predictors, and of their mutual
relationship.

Analysing the mortality data we have demonstrated that an established
regression equation can have alternative subsets yielding very similar predic-
tions, thus it is a matter of our choice — may be based on some additional reasoning
— which subset to introduce into the proposed regression model.

We found that the method proposed by Hawkins (1973) is very convenient for
identifying alternative subsets of predictors. Scatterplot matrices, biplots, and
rotated loadings (derived from rescaled eigenvectors) can provide useful hints on
the direction of mutual relationships amongst the considered variables.

We have reported in the paper our investigations on mortality of men. Similar
analysis was carried out on mortality of women. The revealed interdependencies
look very similar, although the variable X (="divr”) appears a little less, and the
variable X;; (="nmed”) a little more important.
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Analiza regresji wyznaczajacej umieralno$é mezczyzn w Polsce
w latach 1989-91

Streszczenie

Badany jest zwiazek miedzy ogélna umieralnoscia mezczyzn w Polsce obserwowana
w 49 wojewédztwach i zespolem 9 zmiennych opisujacych $rodowisko i socjo-
ekonomiczny status kazdego z wojewédztw. Standardowa analiza regresji wielokrotnej
(metoda najmniejszych kwadratow) wykazala wyrazna zaleznosé miedzy umieralnoécia
1 zespotem badanych zmiennych (wspélczynnik korelacji wielokrotnej réwny 0.75).

Jednakze wnioskowanie oparte na pelnym modelu regresji i testowanie hipotez o
poszczegdlnych wspélezynnikach réwnania moze nie doprowadzié do Jjednoznacznej
oceny wplywu poszezegélnych zmiennych objasniajacych na umieralnosé. Fakt ten
spowodowany moze byé przez

1) istnienie obserwacjl wyraznie "odstajacych”, ktére moga wplynac zasadniczo na
postaé otrzymanego réwnania regresji;

2) istnienie mniejszego (lub kilku mniejszych) podzbioréw zmiennych objasnia-
Jjacych "réwnie dobrze" opisujacego badana zaleznosd;

3) wystepowanie silnych korelacji miedzy rozpatrywanymi zmiennymi, powodu-
jacych ich wspétliniowo$é i naruszajacych stabilno$é otrzymanych oszacowaf
wspélezynnikéw regresji .

Dla wyjaénienia sformulowanych zagadniei zastosowano techniki statystyczne
eksploratywnej analizy danych, wyznaczono wspélezynniki regresji przy uzyciu metod
odpornych na zaklécenia — metode alfa-obciecia i metode wag Hubera oraz metode
Hawkinsa (1973) badania wspolzaleznosci statystycznych, pozwalajaca na znajdowanie
podzbioru zmiennych, ktére moga zastepowaé sie wzajemnie.

Slowa kluczowe: regresja metoda najmniejszych kwadratéw, podzbiory predyktordw,
alternatywne podzbiory, eksploratywna analiza danych, umieralno$é mezczyzn
w Polsce.



